Hubs also often come with a BNC and/or AUI connector to allow connection to legacy 10BASE2 or 10BASE5 network segments. The availability of low-priced network switches has largely rendered hubs obsolete but they are still seen in older installations and more specialized applications.
A network hub is a fairly un-sophisticated broadcast device. Hubs do not manage any of the traffic that comes through them, and any packet entering any port is broadcast out on every other port. Since every packet is being sent out through every other port, packet collisions result--which greatly impedes the smooth flow of traffic.
The need for hosts to be able to detect collisions limits the number of hubs and the total size of the network. For 10 Mbit/s networks, up to 5 segments (4 hubs) are allowed between any two end stations. For 100 Mbit/s networks, the limit is reduced to 3 segments (2 hubs) between any two end stations, and even that is only allowed if the hubs are of the low delay variety. Some hubs have special (and generally manufacturer specific) stack ports allowing them to be combined in a way that allows more hubs than simple chaining through Ethernet cables, but even so, a large Fast Ethernet network is likely to require switches to avoid the chaining limits of hubs.
Most hubs detect typical problems, such as excessive collisions on individual ports, and partition the port, disconnecting it from the shared medium.[citation needed] Thus, hub-based Ethernet is generally more robust than coaxial cable-based Ethernet,[citation needed] where a misbehaving device can disable the entire segment. Even if not partitioned automatically, a hub makes troubleshooting easier because status lights can indicate the possible problem source or, as a last resort, devices can be disconnected from a hub one at a time much more easily than a coaxial cable. They also remove the need to troubleshoot faults on a huge cable with multiple taps.
Hubs classify as Layer 1 devices in the OSI model. At the physical layer, hubs can support little in the way of sophisticated networking. Hubs do not read any of the data passing through them and are not aware of their source or destination. Essentially, a hub simply receives incoming packets, possibly amplifies the electrical signal, and broadcasts these packets out to all devices on the network - including the one that originally sent the packet.
Technically speaking, three different types of hubs exist:
1. Passive2. Active3. Intelligent
Passive hubs do not amplify the electrical signal of incoming packets before broadcasting them out to the network. Active hubs, on the other hand, do perform this amplification, as does a different type of dedicated network device called a repeater. Some people[who?] use the terms concentrator when referring to a passive hub and multiport repeater when referring to an active hub.[citation needed]
Intelligent hubs add extra features to an active hub that are of particular importance to businesses. An intelligent hub typically is stackable (built in such a way that multiple units can be placed one on top of the other to conserve space). It also typically includes remote management capabilities via SNMP and virtual LAN (VLAN) support.
Hubs remain a very popular device for small networks because of their low costs.
The need for hosts to be able to detect collisions limits the number of hubs and the total size of the network. For 10 Mbit/s networks, up to 5 segments (4 hubs) are allowed between any two end stations. For 100 Mbit/s networks, the limit is reduced to 3 segments (2 hubs) between any two end stations, and even that is only allowed if the hubs are of the low delay variety. Some hubs have special (and generally manufacturer specific) stack ports allowing them to be combined in a way that allows more hubs than simple chaining through Ethernet cables, but even so, a large Fast Ethernet network is likely to require switches to avoid the chaining limits of hubs.
Most hubs detect typical problems, such as excessive collisions on individual ports, and partition the port, disconnecting it from the shared medium.[citation needed] Thus, hub-based Ethernet is generally more robust than coaxial cable-based Ethernet,[citation needed] where a misbehaving device can disable the entire segment. Even if not partitioned automatically, a hub makes troubleshooting easier because status lights can indicate the possible problem source or, as a last resort, devices can be disconnected from a hub one at a time much more easily than a coaxial cable. They also remove the need to troubleshoot faults on a huge cable with multiple taps.
Hubs classify as Layer 1 devices in the OSI model. At the physical layer, hubs can support little in the way of sophisticated networking. Hubs do not read any of the data passing through them and are not aware of their source or destination. Essentially, a hub simply receives incoming packets, possibly amplifies the electrical signal, and broadcasts these packets out to all devices on the network - including the one that originally sent the packet.
Technically speaking, three different types of hubs exist:
1. Passive2. Active3. Intelligent
Passive hubs do not amplify the electrical signal of incoming packets before broadcasting them out to the network. Active hubs, on the other hand, do perform this amplification, as does a different type of dedicated network device called a repeater. Some people[who?] use the terms concentrator when referring to a passive hub and multiport repeater when referring to an active hub.[citation needed]
Intelligent hubs add extra features to an active hub that are of particular importance to businesses. An intelligent hub typically is stackable (built in such a way that multiple units can be placed one on top of the other to conserve space). It also typically includes remote management capabilities via SNMP and virtual LAN (VLAN) support.
Hubs remain a very popular device for small networks because of their low costs.
No comments:
Post a Comment